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Abstract We study the buckling instability of a colloidal
particle layer adhered to an elastic substrate using an inte-
grated experimental and theoretical approach. Experiments
using monodisperse colloid-scale spherical particles made
of polystyrene and silica, show that the wavelength of the
initial (critical) buckling mode is independent of particle
modulus and linearly dependent on particle radius—in con-
tradiction with the predictions of the prevailing continuum
model. We developed a granular model of the particle layer
using structural mechanics techniques. The granular model
predicts the observed wavelength of the initial, critical buck-
ling mode within the estimated range of parameter values
for the experiment. The evolution of this mode into the post-
buckling regime is examined. Results highlight the crucial
role of material discreteness in the mechanical response, and
the need for accurate methods of estimating parameters for
the particle-scale resistances against buckling.

Keywords Localisation · Periodicity · Bifurcation ·
Instability · Buckling

1 Introduction

Buckling instabilities in thin films adhered to thick elastic
substrates have recently been the focus of much attention
[1–4]. The prevailing theory for the emergence of such sinu-
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soidal buckling patterns in film-substrate composites under
compression is derived from a continuum model involving
a homogeneous thin elastic film of thickness t on an elas-
tic substrate [1–3,5]. Under plane-strain conditions, with the
film assumed to be much stiffer than the soft thick substrate,
the balance between the energy required to bend the film and
that required to deform the underlying substrate provides the
condition for the onset of buckling. For small strains and
small amplitudes of the buckled configuration relative to the
wavelength, the critical wavelength λC for which the total
strain energy is a minimum is [1–3]:

λC = 2π t

(
Ē f

3Ēs

)1/3

; (1)

where Ēα = Eα/(1−ν2
α), Eα is the Young’s elastic modulus

and να is the Poisson ratio (subscripts α = f, s represent film
and substrate, respectively).

The continuum model in (1) has been adapted to study
periodic buckling instabilities arising in systems compris-
ing a granular monolayer suspended on a fluid base (e.g.
[6]). While the model is able to capture the observed buck-
ling wavelengths, more recent experiments [7,8] cast light on
discreteness as a vital ingredient in modelling the collective
behaviour of the particles these systems. In the experiments
presented here, we observe buckling instabilities in disaccord
with Eq. (1) and, consequently, propose a granular model
to characterise quantitatively the influence of discreteness
on mechanical response. Specifically, we take the first steps
toward unraveling the micromechanics of buckling instabil-
ities in a granular monolayer on a thick substrate, through
an integrated experimental and theoretical approach. From
the theoretical side, we perform a structural stability analy-
sis of the discrete model. Model predictions are then com-
pared with measurements from a suite of experiments using
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polystyrene (PS) and silica (Si) particles which quantify the
dependence of the critical wavelength on the elastic modulus
and radius of the particles. Our specific objective is to estab-
lish whether or not the discrete granular model can repro-
duce the observed wavelength of the initial critical buckling
mode, and the evolution of this mode into the post-buckling
regime.

This multidisciplinary effort is underpinned by key
advances, particularly from the experimental front in both
polymer physics as well as granular media micromechan-
ics. Direct analysis of buckling of so-called “force chains”
in two dimensions, in a series of physical experiments [9–
11] and numerical simulations [12,13] for millimeter-scale
particles, has shown that buckling instabilities govern the
shear strength and failure of dense granular media. Grains
in a deforming granular material self-organise to form two
classes of structures. The first are the columnar structures
of force chains, also known as the strong network [12–15]:
these bear the majority of the load and continually align
in the direction of greatest compression or major principal
stress. The second are cyclic structures comprising mainly
the complementary weak network particles which provide
lateral support to force chains [16,17]. For two- and three-
dimensional systems, these two classes of structural building
blocks evolve in a highly cooperative manner, the micro-
mechanical details of their co-evolution govern the different
regimes of deformation and the transitions between these
regimes [9,16,17]. The direct analysis of the evolution of
force chains and their supporting neighbours is currently only
possible in physical experiments on 2D photoelastic disk sys-
tems, through the techniques developed by Behringer and his
group [10,11,15,18]. To date, these constitute the only exper-
imental approach capable of delivering measurements of con-
tact forces as well individual grain positions and kinematics
over many stages of the loading history. More recent analy-
sis of photoelastic disk assemblies under cyclic shear from
Behringer et al. [11], using a combined structural mechan-
ics, complex networks and dynamical systems techniques,
has uncovered details of self-organisation of structural build-
ing blocks [9,18]. Favoured cluster conformations reside in
distinct stability states, reminiscent of “magic numbers” for
molecular clusters. To support axial loads, force chains typ-
ically reside in more stable states of the stability landscape,
preferring stabilising truss-like, 3-cycle contact topologies
with neighboring grains [9,17,18]. The most likely confor-
mational transitions during force chain failure by buckling
correspond to rearrangements among, or loss of, contacts
which break these 3-cycles [16]. These advancements in the
structural micromechanics of buckling and self-organisation
in millimeter-scale particles may potentially benefit the
optimal design of granular composites. To this end, key
knowledge gaps at the fundamental level must first be
addressed.

Despite the significant insights into the buckling evolution
of force chains, there is still no basic experimental validation
of the underlying physics. In particular, no studies have yet
been undertaken to explore in both experiment and theory the
effect of particle properties (e.g. size, shape, stiffness and sur-
face properties), packing topologies and loading conditions
on the resultant buckling mode. This includes sinusoidal or
localised buckling modes, as observed from the nanoscale
and beyond [4,10]. In this study, we embark on a combined
experimental and theoretical program which focusses on the
length scales of buckling instabilities for a broader range of
granular materials, here beginning with micron-scale parti-
cles adhered to an elastic substrate. Of interest are the proper-
ties of the critical buckling mode, specifically, how its wave-
length depends on particle properties (e.g. size, spring stiff-
ness governing inter-particle interaction), loading conditions
and the number of particles in the chain.

In Sect. 2, we present the experimental system. We formu-
late the granular model of the monolayer on an elastic sub-
strate in Sect. 3. Results from comparing the model predic-
tions against experimental observations are given in Sect. 4.
Conclusions are drawn in Sect. 5.

2 The experiment

The basic experimental set-up consists of a well-ordered
monolayer of colloid-scale spherical particles laminated to
a soft elastic substrate clamped in a compression stage
(Fig. 1a). The colloidal layer is imaged with an Olympus
Flouview 1000 laser scanning confocal microscope, while
the substrate is quasi-statically compressed under plane-
strain conditions. A typical sample response in Fig. 1b, c
shows that the colloidal layer buckles out-of-plane and forms
a repetitive undulation. As shown in Fig. 1d, the confocal
observation allows us to determine accurate 3D coordinates
for every particle in the system. We focus on two length scales
of this buckling pattern: (a) peak-to-peak distance in the com-
pression direction or wavelength λ, (b) peak-to-valley dis-
tance in the perpendicular direction or amplitude A.

Elastic substrates were formed with a commercial two part
polydimethylsiloxane (PDMS) elastomer (Sylgard 184, Dow
Corning). The cured PDMS has fair adhesion to the colloidal
particles and its modulus can be easily controlled over several
orders of magnitude by mixing various ratios of polymer and
prepolymer. After mixing, the PDMS is poured into a form
such that many 1 cm×8 cm×0.5 cm pieces were fabricated in
each batch. Forms were placed in a vacuum oven, degassed,
and annealed at 70 ◦C for 1 h and subsequently aged an addi-
tional 12 h before use. The adhesive contact details between
the particle and film are beyond the scope of this work (and
largely understood [19]) but a few comments are warranted.
First, there is no experimental evidence that the adhesive
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Fig. 1 a Photograph of the mechanical strain stage used in these experi-
ments. The stage compression is driven by a motor (Left of image), and
a PDMS substrate is shown clamped into the stage. The highlighted
region shows a typical sample. A scale bar indicates 20 mm. b A Laser
Scanning Confocal Microscope (LSCM) image of an uncompressed
particle monolayer (radius R = 1.6 µm polystyrene spheres). c The
same film under a compressive strain of 10.4 %, showing out-of-plane
buckling. d Data for a typical particle chain rendered in 3D for clarity

contact on the particles changes significantly during a typi-
cal experiment (the substrate can to some extent be observed
behind the particles). Secondly, because we examine simi-

larly sized silica and polystyrene particles, and find no sig-
nificant difference in behaviour we can assume that we are
not probing adhesion in our experiments. Finally, with large
strains and higher modulus PDMS we do observe adhesive
failure between the particles and the substrate which we will
examine in a later work.

Colloidal monolayers were formed on freshly cleaved
mica substrates through a typical drop drying method [20].
Colloidal solutions were created by mixing dry colloids with
pure (Milli-Q) water. Colloids shipped in water solution were
used as received. Occasionally samples were cooled in order
to slow the water evaporation and crystal formation process.
After drying, the particle monolayers were transferred to the
PDMS substrate by light compression. To aid in the removal
of the mica sheet, a drop of milliQ water was placed at the
PDMS/mica contact line. Samples were then allowed to dry
in air before uniaxial mechanical compression was imposed.
Crystal grains were observed if they were within 10◦ of the
direction of applied strain.

Figure 2 shows the typical evolution of the buckling wave-
length: the data collapses onto one master curve, a decreas-
ing function of the applied engineering strain ε = |ΔL/L|,
where L is the initial distance between the two strain stage
clamps and we neglect an explicit sign as all discussion per-
tains to compressive strain. The trend appears to be linear in
the small to moderate strain region. Importantly, we note that
particles of significantly different modulus (polystyrene (PS)
and silica (Si)) also collapse onto one master curve. This is
a strong indication that the behaviour is independent of the
particle properties (e.g. elastic modulus, surface roughness).
If the film modulus in (1) is to be associated with the mod-
ulus of particles in the granular layer, then this presents a
contradiction with continuum theory. Taken together, these
provide three observations which can be compared directly
with the theory: (a) λ is independent of particle modu-
lus, (b) λC is linearly dependent on particle radius R, and

(a) (b)

Fig. 2 Typical experimental results. a Wavelength λ scaled by par-
ticle diameter 2R, for several different colloidal samples on identical
substrates. The average slope extrapolates to a zero strain wavelength
of 5.3 ± 0.4. Note the linear relation at small to moderate strain. No

difference is seen in the response of polystyrene (PS) and silica (Si) par-
ticles, despite a considerable difference between the modulus of silica
and polystyrene. b Dependence of wavelength on particle radius at two
different levels of applied compressive strain
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(c)λC/2R ∼ 5.3±0.4. Additional results will be shown later
in the paper, along with the buckling amplitude A which also
collapses onto a master curve that describes a monotonically
increasing function of strain.

3 The model

For the experimental system under plane-strain compression
(Fig. 1), we construct a granular model comprising a one-
dimensional chain of N +2 identical spherical particles, each
of radius R, labelled i = 0, . . . , N + 1 [21,22]. The chain of
particles, adhered to the elastic substrate, is subject to an axial
compressive force F (Fig. 3a). In two-dimensions, where
each particle has three degrees of freedom (two translational,
one rotational), the chain of N + 2 particles has a total of
3N + 6 degrees of freedom. Recall that the particles in the
experiment are near-rigid; hence, we can reasonably assume
that the distance between adjacent particles is constant (i.e.
2R) throughout loading. This yields N +1 conditions for the
N + 1 contacts, thereby reducing the number of degrees of
freedom to 2N +5. Imposing boundary conditions at the ends
of the particle chain further reduce the number of degrees of
freedom for each particle i to two: a lateral displacement and
rotation, respectively denoted by Rqi and ωi , each measured
with respect to the initial undeformed configuration (Fig. 3a).

The particles at both ends are free to rotate with the centre
of particle i = 0 held fixed, while that of particle i = N + 1
confined to horizontal translation only, i.e. q0 = qN+1 =
0. Buckling (Fig. 3b) is resisted by the contact forces and
contact moment, each governed by an elastic spring (Fig. 3c).

(a)

(b)

(c)

Fig. 3 a Initial undeformed configuration of thin monolayer on a very
thick substrate (only top part depicted), showing particle chain in layer
under axial compression. b Buckled configuration of chain showing
adjacent particles i and i + 1. c From top left in clockwise direction:
particles i and i + 1 in initial undeformed plane, and spring resistances
to relative particle displacement in direction tangential to the contact
plane, vertical displacement from undeformed axis of chain, and relative
particle rotation, shown with relevant spring stiffness parameters kt , ks ,
and kr , respectively

The relative tangential force f t
i is given by f t

i = kt di : kt is
the spring stiffness and di is the sliding distance between
particles i and (i + 1). Similarly, the contact moment mi and
the lateral support provided by the elastic substrate f s

i are
given, respectively, by mi = kr R2(ωi+1 − ωi ) and f s

i =
ks Rqi : kr and ks are the spring stiffnesses.

The potential energy stored in the buckled particle chain
is governed by the work done by the applied axial load F and
the interactions between the particles along the chain f t

i and
mi , as well as between the particle chain particles and the
elastic substrate f s

i . The sliding distance, rolling angle and
axial end-shortening between the i th and (i + 1)th particles
is [21,22]:

di = R

[
2 arcsin

(
qi+1 − qi

2

)
− ωi+1 − ωi

]
, (2)

ψi = ωi+1 − ωi , (3)

Δi = 2R

⎛
⎝1 −

√
1 −

(
qi+1 − qi

2

)2
⎞
⎠ . (4)

Therefore the potential energy function for the complete sys-
tem can be written as:

V = ks R2

2

N+1∑
i=0

q2
i + kt

2

N∑
i=0

d2
i + kr R2

2

N∑
i=0

ψ2
i −F

N∑
i=0

Δi .

(5)

Summation is taken from 0 to N + 1 in the first term to
ensure that all end effects are included. No boundary condi-
tions have been taken into account in this equation involving
2(N + 2) unknowns, i.e. qi and ωi (0 ≤ i ≤ N + 1). Due
to the nonlinearity of qi in the expressions for di and Δi ,
the potential energy function V given in (5) has nonlinear
derivatives with respect to qi and ωi . We present below two
sets of analysis: (i) the linear analysis of critical buckling in
which the small displacement terms in the potential energy
function V are linearised, and (ii) the nonlinear analysis of
V for the post-buckling regime.

3.1 Linear analysis of critical buckling

The objective of this analysis is to determine the minimum
critical buckling load and its corresponding critical buckling
mode. When considering the critical buckling point where
displacements are small, we may simplify the analysis by
linearising the expressions for di andΔi , retaining only first-
order terms in the series expansions for the arcsine and square
root functions. This linearisation results in a so-called ‘lin-
earised’ potential energy function [21,22]:
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Vlin = 1

2
ks R2

N+1∑
i=0

q2
i + 1

2
kr R2

N∑
i=0

(ωi+1 − ωi )
2

+ 1

2
kt R2

N∑
i=0

(qi+1 − qi − ωi+1 − ωi )
2

− 1

4
F R

N∑
i=0

(qi+1 − qi )
2 (6)

≡ V (q0, q1, . . . , qN+1, ω0, ω1, . . . , ωN+1); (7)

keeping in mind that linearisation is not performed directly
on the potential energy function which, in this case, is in
quadratic form.

Consider the buckling of the particle chain under pin-
ended boundary conditions: q0 = 0, qN+1 = 0. Following
[21,23], we expand qi and ωi as Fourier modes:

qi =
N+1∑
m=0

um sin

(
imπ

N + 1

)
, (8)

ωi =
N+1∑
m=0

φm cos

(
imπ

N + 1

)
, (9)

with 2(N+2)modal amplitudes um andφm (0 ≤ m ≤ N+1).
The boundary conditions for q0 and qN+1 are automatically
satisfied with these modes and thus we can ignore u0 and
uN+1 in Eq. (8). Substituting these modes into the linearised
form of V leads to a new potential energy function W of the
2N + 2 modal amplitudes um and φm :

W = W (u1, . . . , uN , φ0, φ1, . . . , φN+1). (10)

W is in a near-diagonal quadratic form; terms in umun, φmφn

and umφn are zero for m �= n, whereas those in u2
m, φ

2
m and

umφm generally exist. The modal amplitudes um (1 ≤ m ≤
N ) and φm (0 ≤ m ≤ N + 1) should be such that the system
maintains equilibrium:

∂W/∂um = 0 (1 ≤ m ≤ N ), (11)

∂W/∂φm = 0 (0 ≤ m ≤ N + 1). (12)

Before proceeding further, note that ∂W/∂φ0 = 0 and
∂W/∂φN+1 = 0 imply φ0 = φN+1 = 0. Thus we have 2N
unknowns: um and φm (1 ≤ m ≤ N ). The problem can be
further simplified by eliminating φm (1 ≤ m ≤ N ) from
the potential energy function W . To do this, the N first-order
equilibrium equations ∂W/∂φm = 0 (1 ≤ m ≤ N ) are writ-
ten in the form of a Taylor expansion about the undeflected
state:

∂W

∂φm
≈ ∂W

∂φm

∣∣∣∣
0
+

N∑
j=1

∂

∂u j

(
∂W

∂φm

)∣∣∣∣
0

u j

+
N∑

j=1

∂

∂φ j

(
∂W

∂φm

)∣∣∣∣
0
φ j

= ∂2W

∂um∂φm

∣∣∣∣
0

um + ∂2W

∂φ2
m

∣∣∣∣
0
φm = 0

(1 ≤ m ≤ N ).

The second equality is due to the fact that W does not con-
tain terms u jφm and φ jφm with j �= m. Thus we have the
expression:

φm = −
(
∂2W/∂um∂φm

) |0(
∂2W/∂φ2

m

) |0 um (1 ≤ m ≤ N ). (13)

As no cross-terms umφm appear from the work done by the
applied load F , these equations are independent of F . Sub-
stituting (13) for φm in terms of um into the W -function,
we obtain the diagonalised form of the potential function
with N degrees of freedom, which we henceforth write as
A = A(u1, u2, . . . , uN ).

Since the potential function A is in diagonal form, dou-
ble differentiation of A with respect to each of the um in
turn leads to a set of N stability coefficients. Letting these
stability coefficients be zero, we obtain N critical loads, FC

m
(1 ≤ m ≤ N ), corresponding to the sinusoidal critical modes
or eigenfunctions defined by the integer values of 1 ≤ m ≤ N
in Eqs. (8), (9). The minimum critical load, FC

min , and its
associated wave number mmin , will depend on the relative
values of the stiffnesses of the springs that govern the resis-
tances to buckling. As shown in [21], the stability of the
initial post-buckling for mode m may be determined from
the curvature d2 F

du2
m

, evaluated at the critical point C . Finally,

accounting for the effects of the normal deformation of parti-
cles at contacts introduces extra degrees of freedom into the
expressions for the potential energy (5) and (6). This leads
to additional equilibrium relations for the extra degrees of
freedom which are independent or decoupled from those in
(11), (12) for the lateral displacements, qi , (1 ≤ m ≤ N ) and
rotations, ωi (0 ≤ m ≤ N + 1). These additional relations
will not affect the critical buckling loads and their corre-
sponding buckling modes, since these are solely determined
from (11), (12). However, the normal deformation of the
particles will affect the total length of the buckled particle
chain.

3.2 Nonlinear analysis to post-buckling regime

The full nonlinear potential energy function (5) and the equi-
librium conditions require for all i = 0, . . . , N + 1:
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∂V

∂qi
= ks R2qi − RF

2

[
qi − qi−1√

1 − 1/4(qi−1 − qi )2

− qi+1 − qi√
1 − 1/4(qi − qi+1)2

]

+ kt R2

⎡
⎣2 arcsin

(
qi −qi−1

2

)
− ωi−1 − ωi√

1 − 1/4(qi−1 − qi )2

−
2 arcsin

(
qi+1−qi

2

)
− ωi − ωi+1√

1 − 1/4(qi − qi+1)2

⎤
⎦ = 0; (14)

∂V

∂ωi
= R2

[
2ωi (k

r + kt )+ (kt − kr )(ωi−1 + ωi+1)

− 2kt
(

arcsin
qi − qi−1

2
+arcsin

qi+1 − qi

2

) ]
=0.

(15)

We impose constraints q0 = qN+1 = 0, then set the cur-
vature of the chain at each end to zero to reflect a simply
supported boundary condition (see [24]). The equilibrium
conditions ∂V

∂q0
= ∂V

∂qN+1
= 0 are now satisfied. Similar con-

ditions apply for ω enabling ω0 and ωN+1 to be expressed in
terms of the internal degrees of freedom q1, ω1, qN & ωN .
This leaves 2N degrees of freedom with 2N associated equi-
librium conditions. To investigate the post-buckling behav-
iour, we used the software AUTO [24,25] to find the equilib-
rium paths under parametric variation, while identifying all
possible bifurcations.

4 Results: model versus experiment

The granular model was constructed under the assumption
of hard (near-rigid) spheres, thus model predictions are inde-
pendent of the material properties of the spheres, in accor-
dance with the experimental results in Fig. 2a. To compare
the experimental observations against model predictions, we
must focus on the influence of particle radius and the three
elastic spring resistances to buckling.

4.1 Resistances to buckling: estimating parameters

A method for the accurate estimation of experimental val-
ues for the spring stiffnesses representing the strength of the
resistances mobilised at the particle scale is currently lack-
ing. Thus a quantitative comparison between experimental
observations and model predictions is not possible. Instead,
we use a simple scaling argument to estimate the parame-
ters and establish the extent to which the model can qualita-
tively reproduce observed behaviour. The substrate deforma-
tion will resist any displacement, driving the system towards

small length scales. The complementary energy which drives
the system to larger length scales (bending in the continuum
case) does not exist. In this case, it is replaced by the con-
straints of the contact moment and tangential force acting
between adjacent particles in the particle chain. We thus base
our estimates of the spring constants from the elastic proper-
ties of the substrate. In particular, a reasonable choice for ks

is made by assuming a Hookean constitutive relation for the
elastic substrate. Thus ks ∼ E where E is the Young’s elas-
tic modulus of the substrate: this yields ks = 400 kN/m. We
then consider the critical and post-buckling regimes for two
sets of parameters with ks = 400 kN/m. In the first, denoted
as P1, we have kr

ks > 1 and kt

ks > 1: specifically kt = 1,100
kN/m and kr = 1,000 kN/m. Parameter set P1 corresponds
to the observation that the relative slip and relative rotation
between adjacent particles in the experiment were small com-
pared to the vertical displacement. Note that similar relative
values for these parameters were used in the force chain
analysis of [13] for granular assemblies where resistances
at the contacts in the force chain column were stiffer than
that of the lateral confining force from the surrounding weak
network particles. In the second parameter set, denoted as
P2, we set all three spring constants to the same order as E :
ks = kt = kr = 400 kN/m. In addition, given the uncer-
tainty regarding the range of experimental parameter values,
a thorough parametric analysis is undertaken for the critical
buckling mode.

4.2 Critical buckling load and wavelength

Figure 4a shows the spectrum of critical buckling loads cor-
responding to the harmonically varying critical modes or
eigenfunctions for parameter set P1. The minimum critical
buckling load FC

min occurs at mmin = 13: this determines a
characteristic critical buckling wavelength for this parameter
set and chain length [22]. In Fig. 4b we see the model predicts
an initially oscillatory variation of the critical wavelength
with chain length, but the amplitude rapidly decays as chain
length grows, giving way to a dominant wavelength that is
linearly dependent on the particle radius, in clear agreement
with the experiment (Fig. 2a, b).

Using parameter set P1, the model predicts critical wave-
lengths in the range that encompasses the experimental val-
ues λC/2R ∼ 5.3 ± 0.4 (Fig. 4b). A similar decaying oscil-
latory trend, as shown in Fig. 4b, applies for parameter set
P2; however the critical wavelength approaches ∼4 particle
diameters. The robustness of λC with respect to chain lengths
of ∼30 particles or greater enables us to perform a paramet-
ric analysis using a sufficiently long chain, with confidence
that any variation in N + 2 will not have significant effects
on our analysis. In Fig. 5, we consider the effect of varying
model spring parameters within the estimated experimental
range of parameter values, with a chain length of 61 particles.
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Fig. 4 Model predictions for P1 parameter set and R = 1.6 µm. a Crit-
ical buckling loads for N + 2 = 35 (FC

min = 2.06 N and mmin = 13).
b Predicted critical wavelengths consistent with those observed in exper-

iment over a wide range of chain lengths N +2, with increasing accuracy
as chain length grows

(a) (c)(b)

Fig. 5 Predicted influence of stiffness parameters on critical buckling
wavelength for R = 1.0 µm, N+2 = 61: a kr = 400 kN/m, b kt = 400
kN/m, c ks = 400 kN/m. Contour plots show the range of parame-

ter values which give the experimentally measured critical wavelength
λC/2R ∼ 5.3 ± 0.4

Observe that increasing the lateral confining stiffness (ks)
drives the critical wavelength down because large displace-
ments become unfavourable. The opposite is seen when the
tangential (kt ) and rolling (kr ) stiffnesses are increased; inter-
particle sliding and rolling now encounter greater resistance
and larger wavelengths emerge. The accompanying contour
plots show the multitude of possible parameter combinations
which produce critical wavelengths consistent with those
observed in experiment.

4.3 Post-buckling amplitude and wavelength

The experimental comparisons in the preceding section per-
tain to the critical buckling point where the linearised analy-

sis is valid. In order to examine the behaviour in the post-
buckling regime, where the assumption of small displace-
ments is no longer valid, the full nonlinear potential (5)
must be used. In Figs. 6, 7, and 8, we employ AUTO to
determine the evolution of post-buckling configurations ema-
nating from the initial critical buckling mode mmin = 13
for a particle chain of 35 particles, using parameter set P1.
A particle radius of R = 1.6 µm is chosen to enable a
direct comparison with a sample set of experimental data
points. For P1, mmin is unstable (recall Fig. 4a). This implies
that the granular layer can adopt other configurations in the
post-buckling regime, including sinusoidal or localised con-
figurations. While an unstable critical buckling mode is a
natural precursor of localisation [22], we see from Fig. 6
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Fig. 6 Energy of post-buckling configurations generated by AUTO
for increasing strain emanating from mmin = 13 with parameter set
P1, R = 1.6 µm and N + 2 = 35. Sinusoidal modes are energeti-
cally favoured; bifurcations which lead to localisation are marked by
an increase in potential energy

(a)

(b)

(c)

Fig. 7 AUTO generated post-buckling configurations for increasing
strain along least energy solution branch emanating from mmin = 13
with parameter set P1, R = 1.6 µm and N + 2 = 35: a ε = 1.35 %,
b ε = 10 %, c ε = 25 %

that sinusoidal modes are still energetically favoured. This
may explain the lack of localisation observed in the experi-
ment. The persistence of sinusoidal buckling configurations
into the post-buckling regime is shown in Fig. 7. The pre-
dicted increase (decrease) in the amplitude (wavelength) of
the buckled configuration with increasing strain is in reason-
able agreement with experimental observations: see Fig. 8a

(Fig. 8b). The higher predicted amplitudes in Fig. 8a may
be due to the substrate in the experiment being an elas-
tic continuum, while that in the model comprises discrete
springs: the continuum substrate will exert an additional
resistance to the buckling in the substrate plane that will
drive down the amplitude to smaller values. Overall, whilst
good agreement between model predictions and the experi-
ments is evident, we note that these findings only suggest that
the model has the possibility to reproduce what is observed
experimentally. We make no claim that these computed solu-
tions are being exactly replicated in experiment. Like P1,
the initial critical buckling mode for P2 proves to be unsta-
ble. As earlier mentioned, this is a precursor condition for
localised buckling, although the eventual post-buckling con-
figuration (localised versus sinusoidal) ultimately depends
on the potential energy pathway. Indeed, in contrast to P1,
an analysis of the energy pathways in the post-buckling
regime for P2 shows that localised modes are energetically
favourable, with buckling localising at one end of the chain.
The predisposition to localised buckling in nano- and micro-
scale particle systems warrants further investigation, both
experimentally and theoretically [4]. In general, many factors
govern the post-buckling behaviour including: initial unde-
formed configuration, particle size distribution, constitutive
properties of the particles, and the relative strengths of the
various resistances at the grain-grain or grain-substrate/wall
contacts. For assemblies of millimetre-size grains, such as
those commonly encountered in soil mechanics (i.e. sand)
[26], localised buckling is prevalent and believed to be the
root-cause of macroscopic failure via shear bands. Indeed,
localised buckling modes and their evolution to shear bands
were demonstrated in 2D assemblies of photoelastic disks
[10,11,15]. We emphasise that, in common with soil mechan-
ics tests, these photoelastic assemblies comprise polydis-
perse particles and embody force chains which are rarely
if ever perfectly straight. By contrast, this study focussed
on a monodisperse granular layer with an initially straight
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Fig. 8 Comparison between model predictions of a amplitude and b
wavelength (parameter set P1, R = 1.6 µm and N + 2 = 35) with
one representative realisation of experimental measurements: compare

with the average measured value in Fig. 2a of λC = (5.3 ± 0.4)2R =
16.96 ± 1.28 µm
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configuration. This difference in particle size distribution and
initial particle alignment is expected to have a profound influ-
ence on buckling behaviour and may thus explain the lack of
localisation observed in the present set of experiments.

5 Conclusion and outlook

We studied the buckling instability of a colloidal particle
layer on an elastic substrate using an integrated experimen-
tal and theoretical approach. Experiments involving spheri-
cal polystyrene and silica particles show that the wavelength
of the initial critical buckling mode is independent of par-
ticle modulus and linearly dependent on particle radius. A
granular model of this system was developed and its struc-
tural stability analysed at the critical buckling point, as well
as in the post-buckling regime. Simple scaling arguments
were used to estimate the possible range of experimental
values for the model parameters, i.e. spring stiffnesses of
resistances against buckling mobilised at the particle-scale.
Experimental observations and model predictions showed a
linear dependence of critical wavelength over a wide range
of particle radii. The predicted values varied according to the
relative values of the spring stiffnesses, but well encapsulate
the measured value (i.e. λC/2R ∼ 5.3 ± 0.4) from experi-
ments. The evolution of the sinusoidal buckling mode into
the post-buckling regime was examined. Again, predicted
amplitudes and wavelengths were in fair agreement with the
experimental measurements.

In closing, we provided experimental evidence of the
buckling of a particle chain in a compressed granular layer.
Our findings highlight the influential role of discreteness on
the mechanical response of the granular layer under con-
strained compression. It is clear that precise measurement
of the grain-scale resistances against buckling is necessary
for quantitative prediction. Ongoing work is focussed on this
issue coupled with model refinements to account for a wider
range of materials from hard to soft particles. Given the
surge in interest and technological importance of buckling
instabilities, we envision that an improved understanding of
the structural micromechanics of buckling in granular com-
posites will find applications in fundamental materials sci-
ence and many emerging technologies from the nanoscale
and beyond. These systems are prone to self-organized pat-
tern formation especially in the lead up to and during failure
(e.g. buckling, wrinkling, shear bands etc.). Thus the ratio-
nal design of granular composites with optimised properties
depends crucially on a proper understanding of the transition
from the discrete to the continuum and the interaction at the
interface—with respect to these patterns of instabilities. To
this end, this study casts light on some open challenges and
future research directions, both theoretical and experimental.
In common with models of other granular-solid interaction

systems, realistic computer simulations would greatly com-
plement the structural mechanics approach adopted here (e.g.
[27]). The simulations can replicate experiments more faith-
fully while the structural mechanics approach can deliver
more insights into the number and nature of accessible con-
figurational states that the system can potentially inhabit.
Realistic simulations may require a coupled Discrete Ele-
ment Model (DEM) and Finite Element Model (FEM) [27].
In the DEM model of the granular layer, various contact mod-
els may be used to represent the interaction at the grain-grain
contacts as well as at the grain-substrate contacts: e.g. linear
spring-dashpot (Hookean), nonlinear spring-dashpot (Hertz-
Mindlin). Coupled with the FEM model of the substrate, one
can perform an inverse analysis to establish not just the con-
tact law that is best suited for the system under study, but
also generate accurate estimates of the parameters associ-
ated with the optimum contact model and constitutive model
for the substrate. This theoretical advance needs to be cor-
related with a series of in-situ measurements, so that rigor-
ous methods can be developed to reliably establish material
parameters. Examples of such are optimisation methods in
which an error function that quantifies the accuracy of numer-
ical predictions with respect to experimental measurements is
minimised. No matter the strategy, a coordinated and highly
integrated effort between theory and experiment offers the
best way forward.
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